650 research outputs found

    Joint Deep Modeling of Users and Items Using Reviews for Recommendation

    Full text link
    A large amount of information exists in reviews written by users. This source of information has been ignored by most of the current recommender systems while it can potentially alleviate the sparsity problem and improve the quality of recommendations. In this paper, we present a deep model to learn item properties and user behaviors jointly from review text. The proposed model, named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel neural networks coupled in the last layers. One of the networks focuses on learning user behaviors exploiting reviews written by the user, and the other one learns item properties from the reviews written for the item. A shared layer is introduced on the top to couple these two networks together. The shared layer enables latent factors learned for users and items to interact with each other in a manner similar to factorization machine techniques. Experimental results demonstrate that DeepCoNN significantly outperforms all baseline recommender systems on a variety of datasets.Comment: WSDM 201

    Kinetic models of ion transport through a nanopore

    Full text link
    Kinetic equations for the stationary state distribution function of ions moving through narrow pores are solved for a number of one-dimensional models of single ion transport. Ions move through pores of length LL, under the action of a constant external field and of a concentration gradient. The interaction of single ions with the confining pore surface and with water molecules inside the pore are modelled by a Fokker-Planck term in the kinetic equation, or by uncorrelated collisions with thermalizing centres distributed along the pore. The temporary binding of ions to polar residues lining the pore is modelled by stopping traps or energy barriers. Analytic expressions for the stationary ion current through the pore are derived for several versions of the model, as functions of key physical parameters. In all cases, saturation of the current at high fields is predicted. Such simple models, for which results are analytic, may prove useful in the study of the current/voltage relations of ion channels through membranes

    Controlling for Confounders in Multimodal Emotion Classification via Adversarial Learning

    Full text link
    Various psychological factors affect how individuals express emotions. Yet, when we collect data intended for use in building emotion recognition systems, we often try to do so by creating paradigms that are designed just with a focus on eliciting emotional behavior. Algorithms trained with these types of data are unlikely to function outside of controlled environments because our emotions naturally change as a function of these other factors. In this work, we study how the multimodal expressions of emotion change when an individual is under varying levels of stress. We hypothesize that stress produces modulations that can hide the true underlying emotions of individuals and that we can make emotion recognition algorithms more generalizable by controlling for variations in stress. To this end, we use adversarial networks to decorrelate stress modulations from emotion representations. We study how stress alters acoustic and lexical emotional predictions, paying special attention to how modulations due to stress affect the transferability of learned emotion recognition models across domains. Our results show that stress is indeed encoded in trained emotion classifiers and that this encoding varies across levels of emotions and across the lexical and acoustic modalities. Our results also show that emotion recognition models that control for stress during training have better generalizability when applied to new domains, compared to models that do not control for stress during training. We conclude that is is necessary to consider the effect of extraneous psychological factors when building and testing emotion recognition models.Comment: 10 pages, ICMI 201

    Spatio-Temporal Fusion Networks for Action Recognition

    Full text link
    The video based CNN works have focused on effective ways to fuse appearance and motion networks, but they typically lack utilizing temporal information over video frames. In this work, we present a novel spatio-temporal fusion network (STFN) that integrates temporal dynamics of appearance and motion information from entire videos. The captured temporal dynamic information is then aggregated for a better video level representation and learned via end-to-end training. The spatio-temporal fusion network consists of two set of Residual Inception blocks that extract temporal dynamics and a fusion connection for appearance and motion features. The benefits of STFN are: (a) it captures local and global temporal dynamics of complementary data to learn video-wide information; and (b) it is applicable to any network for video classification to boost performance. We explore a variety of design choices for STFN and verify how the network performance is varied with the ablation studies. We perform experiments on two challenging human activity datasets, UCF101 and HMDB51, and achieve the state-of-the-art results with the best network

    Simulations of a single membrane between two walls using a Monte Carlo method

    Get PDF
    Quantitative theory of interbilayer interactions is essential to interpret x-ray scattering data and to elucidate these interactions for biologically relevant systems. For this purpose Monte Carlo simulations have been performed to obtain pressure P and positional fluctuations sigma. A new method, called Fourier Monte-Carlo (FMC), that is based on a Fourier representation of the displacement field, is developed and its superiority over the standard method is demonstrated. The FMC method is applied to simulating a single membrane between two hard walls, which models a stack of lipid bilayer membranes with non-harmonic interactions. Finite size scaling is demonstrated and used to obtain accurate values for P and sigma in the limit of a large continuous membrane. The results are compared with perturbation theory approximations, and numerical differences are found in the non-harmonic case. Therefore, the FMC method, rather than the approximations, should be used for establishing the connection between model potentials and observable quantities, as well as for pure modeling purposes.Comment: 10 pages, 10 figure

    A Deep Learning Parameterization for Ozone Dry Deposition Velocities

    Get PDF
    The loss of ozone to terrestrial and aquatic systems, known as dry deposition, is a highly uncertain process governed by turbulent transport, interfacial chemistry, and plant physiology. We demonstrate the value of using Deep Neural Networks (DNN) in predicting ozone dry deposition velocities. We find that a feedforward DNN trained on observations from a coniferous forest site (Hyytiala, Finland) can predict hourly ozone dry deposition velocities at a mixed forest site (Harvard Forest, Massachusetts) more accurately than modern theoretical models, with a reduction in the normalized mean bias (0.05 versus similar to 0.1). The same DNN model, when driven by assimilated meteorology at 2 degrees x 2.5 degrees spatial resolution, outperforms the Wesely scheme as implemented in the GEOS-Chem model. With more available training data from other climate and ecological zones, this methodology could yield a generalizable DNN suitable for global models. Plain Language Summary Ozone in the lower atmosphere is a toxic pollutant and greenhouse gas. In this work, we use a machine learning technique known as deep learning, to simulate the loss of ozone to Earth's surface. We show that our deep learning simulation of this loss process outperforms existing traditional models and demonstrate the opportunity for using machine learning to improve our understanding of the chemical composition of the atmosphere.Peer reviewe

    Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks

    Get PDF
    Retinopathy of Prematurity (ROP) is an ocular disease observed in premature babies, considered one of the largest preventable causes of childhood blindness. Problematically, the visual indicators of ROP are not well understood and neonatal fundus images are usually of poor quality and resolution. We investigate two ways to aid clinicians in ROP detection using convolutional neural networks (CNN): (1) We fine-tune a pretrained GoogLeNet as a ROP detector and with small modifications also return an approximate Bayesian posterior over disease presence. To the best of our knowledge, this is the first completely automated ROP detection system. (2) To further aid grading, we train a second CNN to return novel feature map visualizations of pathologies, learned directly from the data. These feature maps highlight discriminative information, which we believe may be used by clinicians with our classifier to aid in screening

    BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

    Full text link
    The rising volume of datasets has made training machine learning (ML) models a major computational cost in the enterprise. Given the iterative nature of model and parameter tuning, many analysts use a small sample of their entire data during their initial stage of analysis to make quick decisions (e.g., what features or hyperparameters to use) and use the entire dataset only in later stages (i.e., when they have converged to a specific model). This sampling, however, is performed in an ad-hoc fashion. Most practitioners cannot precisely capture the effect of sampling on the quality of their model, and eventually on their decision-making process during the tuning phase. Moreover, without systematic support for sampling operators, many optimizations and reuse opportunities are lost. In this paper, we introduce BlinkML, a system for fast, quality-guaranteed ML training. BlinkML allows users to make error-computation tradeoffs: instead of training a model on their full data (i.e., full model), BlinkML can quickly train an approximate model with quality guarantees using a sample. The quality guarantees ensure that, with high probability, the approximate model makes the same predictions as the full model. BlinkML currently supports any ML model that relies on maximum likelihood estimation (MLE), which includes Generalized Linear Models (e.g., linear regression, logistic regression, max entropy classifier, Poisson regression) as well as PPCA (Probabilistic Principal Component Analysis). Our experiments show that BlinkML can speed up the training of large-scale ML tasks by 6.26x-629x while guaranteeing the same predictions, with 95% probability, as the full model.Comment: 22 pages, SIGMOD 201

    Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes

    Get PDF
    Constant-pressure molecular-dynamics simulations of phospholipid membranes in the fluid phase reveal strong correlations between equilibrium fluctuations of volume and energy on the nanosecond time-scale. The existence of strong volume-energy correlations was previously deduced indirectly by Heimburg from experiments focusing on the phase transition between the fluid and the ordered gel phases. The correlations, which are reported here for three different membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two temperatures showing that the correlation coefficient increases as the phase transition is approached
    • …
    corecore